Math 564: Advance Analysis 1
Lecture 9
Proof of (b) (contioned). We do the same trick as before: slick (a, b b to make it wopact al extend $\left(a_{n}, b_{n}\right]$ to make it open. More precis. els, fix $\left\{>0\right.$, and let $a<a^{\prime}<a+\delta$ here δ is shall enough so that $f\left(a^{\prime}\right) \approx_{\varepsilon} f(a)$. Similarly, let $b_{n}<b_{n}^{\prime}<b_{n}+\delta_{n}$, where δ_{n} is small enough s. That $f\left(b_{n}^{\prime}\right) \approx_{4 / 2 a s i} f\left(b_{n}\right)$. There are such $\delta d\left(\delta_{n}\right)$ h) the richt-coctinnity of f. Then $\left[a^{\prime}, b\right] \leq \bigcup_{a}\left(a_{a}, b_{a}^{\prime}\right)$ I by the congactursm of $\left[a^{\prime}, b\right]$,' the ce is N sit. " $\left\{a^{\prime}, b\right] \leqslant \bigcup_{n<N}\left(a_{n}, b_{n}^{\prime}\right)$. Thus,

Thus, we have clasnitied/fully described all Boer measures on \mathbb{R} which we finite on bed sots.

Measurable functions. Let (X, τ) and (Y, J) be measurable spaces.
Def. of Enction $f: X \rightarrow Y$ is called (\tilde{i}, \mathcal{J})-measurable if $f^{-1}(\tilde{\jmath}) \subseteq \mathcal{I}$, i.e. for each $J \in \mathcal{S} \quad f^{-1}(J) \in \mathcal{I}$.

- When X aah Y are top. spaces (without an g given τ al \mathcal{J}), we call a function $f: X \rightarrow Y$ Bore if it is $(B(X), B(Y))$ measurable, i.e. the f-preimage of each Bored st is Boned.
- When (X, S, μ) is a measure space and Y is a toppspace, we call a function $f: X \rightarrow Y^{\prime}{ }^{\mu}$-measurable if f is $($ Meas r, $B(Y))$-measurable, ie. The f-preinage of each Morel set is g-necsucable.

Remark. The desinition of Y-measurable is asymetric, having a "suabler" o-algebra on the right in order to get a larger clan of fuchious which still we vell-bshaved. In particalar, we vant coctinnous functrous to be measurable.

Prop, Continnoas tunctions between hop. spaces are Borel.
Pcoof. Let X, Y be top. spacces al $f: X \backsim Y$ he con fincoos, i.e. fepreincages if pen sets are open. We do a top-down proof: Lit $S:=\left\{B \in O B(Y): f^{-1}(B)\right.$ i; Bored $\}$. Then \mathcal{J} catains all open sets ade is closed uncler complenents and ctb/ uniocs bease f^{-1} commates vilt These oporctions luntilee $\left.f\right)$, so $S=B(Y)$.

Cantion: Co-positions of $\mu_{\text {-measurable tanctions are typically not }}$ f-mesusuchle. More precisels, let $(x, \mu),(y, \nu),(z, \rho)$ be top. spaces equipped wik Borel measures, e. J, all $=(\mathbb{R}, \lambda)$. Then for a μ-meas. $f: X \rightarrow Y$ and a ν-uecs. funcfien $g: Y \rightarrow Z$, Were is wo ceason $h y$ gof should be μ-measurable' beare for a Bonel $B \subseteq 2, g^{-1}(B)$ is ν-weasurable so we have no waticol over $f^{-1}\left(g^{-1}(B)\right)$.
A constiaction of an excyle aticre incleed got is ont μ-ureasurable vill be outived in HW.

This motivates the followicy detinition:
Def. let X, Y he top spaces. A function $f: X \rightarrow Y$ is culled universally mensurable if it is μ-measurable for all ponel probabilicy weasures on X.

Poop. Composition of universally measurable functions is uaciossally measurable.
Pouf. HW.
The following proposition is, in a way, why measure theory started bear ptwise limits Riemann integrable functions are usually not Riemann integrable, ah praise limits of centimos fuctions are usually not watincous.
In separable metric spaces
Prop. Poictrise limits of μ-measurable functions are g-measurable. More precisely, for a measure pace (x, μ) al a seppetric space Y, if the twafions $f_{n}: X \rightarrow Y$ are g-measurable and $f_{n} \rightarrow f: X \rightarrow Y$ pointuise (ie. $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for all $x \in X$), then f is μ-measurable.
Pret. Again top-down thinking: let $S:=\left\{B \in B(Y): f^{-1}(B) \in\right.$ Meas $\}$. This is dearly a σ-ally. bease Meas is and f^{-1} co nates "ith compliment and cthl unions. It remains to show that ρ contains all open sets and hence $S=\beta(y)$.
let $U \subseteq Y$ be open. For each $x \in X$, if $f(x) \in U$, then $\forall^{\infty}{ }_{n} \in \mathbb{N} f_{n}(x) \in U$. The converse is not true, but ven close. Let $U=\bigcup_{i \in \mathbb{N}} B_{i}$, here each B_{i} is an ball sit. $\overline{B_{i}} s U$.

$$
u
$$

${ }^{\circ} \mathrm{Bi}$

$$
\begin{aligned}
& \quad f^{-1}(u)=\{x \in X: f(x) \in U\}=\bigcup_{i \in}\left\{x \in X: \forall_{n}^{\infty} f_{a}(x) \in\right. \\
& \left.\bar{B}_{i}\right\}=\bigcup_{i \in \mathbb{N}}\left\{x \in X: \forall_{v}^{\infty} x \in f_{n}^{-1}\left(\bar{B}_{i}\right)\right\} \text { because: }
\end{aligned}
$$

\Rightarrow : If $f(x) \in U$ then $\exists i \in \mathbb{N}$ s.t. $f(x) \in B_{i}$, , $\forall_{n}^{\infty} f_{n}(x) \in B_{i}$.
\Leftrightarrow If $\exists i \in \mathbb{N}$ s.t. $\forall_{n}^{\infty} f_{n}(x) \in \overline{B_{i}}$ then $f(x)=\lim _{n} f_{n}(x) \in \overline{B_{i}}$.

But for cant fired $i \in \mathbb{N}, \quad\left\{x \in X: \forall \varepsilon x \in F_{n}^{-1}\left(\bar{B}_{i}\right)\right\}=\liminf$ $f_{n}^{-1}\left(\overline{B_{i}}\right)=\bigcup_{N \in \mathbb{N}} \bigcap_{n \geqslant N} f_{n}^{-1}\left(\overline{B_{i}}\right)^{\prime}$, which is r-weas bare $f_{n}^{-1}\left(\overline{B_{i}}\right)$ B.

Detour to regularity of Bore measures. We prove a slightly stronger veersion of regularity for σ-finite wecsures.
Regularity Revisited. Let x be a metric space and μ be a Bored measure on X. Then μ is strongly regular, i.e. for each aeneas set $A \subseteq X$,

$$
\begin{aligned}
\mu(A) & =\inf \{\mu(u): A \subseteq U \text { open }\} \\
& =\sup \{\mu(C): A \geq C \text { dosed }\}
\end{aligned}
$$

Moreover, $\forall r>0 \exists$ open $U \geq A$ with g
Prot. We've already proven (*k) for finite measures al the last statement with $\{$ is antouctic. In general for a σ-finite measure μ, let $X=\bigotimes_{n} X_{n}$, here X_{n} are Bored $\mathcal{A} \mu\left(X_{n}\right)<a$.
(a) T_{0} prove the appoxination by open sets, we replace end X_{n} with $U_{n} \geq X_{n}$ open with $\mu\left(U_{n}\right)<\infty$. Then let $U_{n} \supseteq V_{n} \supseteq A \cap U_{n}$ be an opec set with $\mu\left(V_{n} \backslash\left(A \cap U_{n}\right)\right) \leqslant \varepsilon / 2^{n+1}$. Then $\bigcup_{n} V_{n} \geq V_{n} A \cap U_{n}=A$ and $\left.\mu / \bigcup_{n} V_{n} \backslash A\right) \leq \sum_{n} \varepsilon / 2^{n+1}=\varepsilon$.
(b) We show us in (a) Hat WCOh, we could have taken X_{n} to bi closed.
See Lecture 7 , Corollary of regularity

